Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Aust Crit Care ; 2023 May 12.
Article in English | MEDLINE | ID: covidwho-2313537

ABSTRACT

BACKGROUND: Data on nutrition delivery over the whole hospital admission in critically ill patients with COVID-19 are scarce, particularly in the Australian setting. OBJECTIVES: The objective of this study was to describe nutrition delivery in critically ill patients admitted to Australian intensive care units (ICUs) with coronavirus disease 2019 (COVID-19), with a focus on post-ICU nutrition practices. METHODS: A multicentre observational study conducted at nine sites included adult patients with a positive COVID-19 diagnosis admitted to the ICU for >24 h and discharged to an acute ward over a 12-month recruitment period from 1 March 2020. Data were extracted on baseline characteristics and clinical outcomes. Nutrition practice data from the ICU and weekly in the post-ICU ward (up to week four) included route of feeding, presence of nutrition-impacting symptoms, and nutrition support received. RESULTS: A total of 103 patients were included (71% male, age: 58 ± 14 years, body mass index: 30±7 kg/m2), of whom 41.7% (n = 43) received mechanical ventilation within 14 days of ICU admission. While oral nutrition was received by more patients at any time point in the ICU (n = 93, 91.2% of patients) than enteral nutrition (EN) (n = 43, 42.2%) or parenteral nutrition (PN) (n = 2, 2.0%), EN was delivered for a greater duration of time (69.6% feeding days) than oral and PN (29.7% and 0.7%, respectively). More patients received oral intake than the other modes in the post-ICU ward (n = 95, 95.0%), and 40.0% (n = 38/95) of patients were receiving oral nutrition supplements. In the week after ICU discharge, 51.0% of patients (n = 51) had at least one nutrition-impacting symptom, most commonly a reduced appetite (n = 25; 24.5%) or dysphagia (n = 16; 15.7%). CONCLUSION: Critically ill patients during the COVID-19 pandemic in Australia were more likely to receive oral nutrition than artificial nutrition support at any time point both in the ICU and in the post-ICU ward, whereas EN was provided for a greater duration when it was prescribed. Nutrition-impacting symptoms were common.

2.
Clin Nutr ; 42(4): 568-578, 2023 04.
Article in English | MEDLINE | ID: covidwho-2267868

ABSTRACT

BACKGROUND: Critically ill patients with obesity have unique and complex nutritional needs, with clinical practice guidelines conflicting regarding recommended energy targets. The aim of this systematic review was to 1) describe measured resting energy expenditure (mREE) reported in the literature and; 2) compare mREE to predicted energy targets using the European (ESPEN) and American (ASPEN) guideline recommendations when indirect calorimetry is not available in critically ill patients with obesity. METHODS: The protocol was registered apriori and literature was searched until 17th March, 2022. Original studies were included if they reported mREE using indirect calorimetry in critically ill patients with obesity (BMI≥30 kg/m2). Group-level mREE data was reported as per the primary publication using mean ± standard deviation or median [interquartile range]. Where individual patient data was available, Bland-Altman analysis was used to assess mean bias (95% limits of agreement) between guideline recommendations and mREE targets (i.e. ASPEN for BMI 30-50, 11-14 kcal/kg actual weight compared to 70% mREE and ESPEN 20-25 kcal/kg adjusted weight compared to 100% mREE). Accuracy was assessed by the percentage (%) of estimates within ±10% of mREE targets. RESULTS: After searching 8019 articles, 24 studies were included. mREE ranged from 1607 ± 385 to 2919 [2318-3362]kcal and 12-32kcal/actual body weight. For the ASPEN recommendations of 11-14 kcal/kg, a mean bias of -18% (-50% to +13%) and 4% (-36% to +44%) was observed, respectively (n = 104). For the ESPEN recommendations 20-25 kcal/kg, a bias of -22% (-51% to +7%) and -4% (-43% to +34%), was observed, respectively (n = 114). The guideline recommendations were able to accurately predict mREE targets on 30%-39% occasions (11-14 kcal/kg actual) and 15%-45% occasions (20-25 kcal/kg adjusted), for ASPEN and ESPEN recommendations, respectively. CONCLUSIONS: Measured energy expenditure in critically ill patients with obesity is variable. Energy targets generated using predictive equations recommended in both the ASPEN and ESPEN clinical guidelines have poor agreement with mREE and are frequently not able to accurately predict within ±10% of mREE, most commonly underestimating energy needs.


Subject(s)
Critical Illness , Obesity , Humans , Adult , Critical Illness/therapy , Obesity/therapy , Energy Metabolism , Calorimetry, Indirect
3.
Lancet ; 401(10376): 527-528, 2023 02 18.
Article in English | MEDLINE | ID: covidwho-2278316
4.
Aust Crit Care ; 2023 Jan 17.
Article in English | MEDLINE | ID: covidwho-2176694

ABSTRACT

BACKGROUND: The COVID-19 pandemic highlighted major challenges with usual nutrition care processes, leading to reports of malnutrition and nutrition-related issues in these patients. OBJECTIVE: The objective of this study was to describe nutrition-related service delivery practices across hospitalisation in critically ill patients with COVID-19 admitted to Australian intensive care units (ICUs) in the initial pandemic phase. METHODS: This was a multicentre (nine site) observational study in Australia, linked with a national registry of critically ill patients with COVID-19. Adult patients with COVID-19 who were discharged to an acute ward following ICU admission were included over a 12-month period. Data are presented as n (%), median (interquartile range [IQR]), and odds ratio (OR [95% confidence interval {CI}]). RESULTS: A total of 103 patients were included. Oral nutrition was the most common mode of nutrition (93 [93%]). In the ICU, there were 53 (52%) patients seen by a dietitian (median 4 [2-8] occasions) and malnutrition screening occurred in 51 (50%) patients most commonly with the malnutrition screening tool (50 [98%]). The odds of receiving a higher malnutrition screening tool score increased by 36% for every screening in the ICU (1st to 4th, OR: 1.39 [95% CI: 1.05-1.77] p = 0.018) (indicating increasing risk of malnutrition). On the ward, 51 (50.5%) patients were seen by a dietitian (median time to consult: 44 [22.5-75] hours post ICU discharge). The odds of dietetic consult increased by 39% every week while on the ward (OR: 1.39 [1.03-1.89], p = 0.034). Patients who received mechanical ventilation (MV) were more likely to receive dietetic input than those who never received MV. CONCLUSIONS: During the initial phases of the COVID-19 pandemic in Australia, approximately half of the patients included were seen by a dietitian. An increased number of malnutrition screens were associated with a higher risk score in the ICU and likelihood of dietetic consult increased if patients received MV and as length of ward stay increased.

5.
BMJ Open ; 12(3): e050153, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-1816761

ABSTRACT

INTRODUCTION: It is plausible that a longer duration of nutrition intervention may have a greater impact on clinical and patient-centred outcomes. The Intensive Nutrition care Therapy comparEd to usual care iN criTically ill adults (INTENT) trial will determine if a whole hospital nutrition intervention is feasible and will deliver more total energy compared with usual care in critically ill patients with at least one organ system failure. METHODS AND ANALYSIS: This study is a prospective, multicentre, unblinded, parallel-group, phase II randomised controlled trial (RCT) conducted in 23 hospitals in Australia and New Zealand. Mechanically ventilated critically ill adult patients with at least one organ failure who have been in intensive care unit (ICU) for 72-120 hours and meet all of the inclusion and none of the exclusion criteria will be randomised to receive either intensive or usual nutrition care. INTENT started recruitment in October 2018 and a sample size of 240 participants is anticipated to be recruited in 2022. The study period is from randomisation to hospital discharge or study day 28, whichever occurs first, and the primary outcome is daily energy delivery from nutrition therapy. Secondary outcomes include daily energy and protein delivery during ICU and in the post-ICU period, duration of ventilation, ventilator-free days, total bloodstream infection rate and length of hospital stay. All other outcomes are considered tertiary and results will be analysed on an intention-to-treat basis. ETHICS AND DISSEMINATION: Ethics approval has been received in Australia (Alfred Hospital Ethics Committee (HREC/18/Alfred/101) and Human Research Ethics Committee of the Northern Territory Department of Health (2019-3372)) and New Zealand (Northern A Health and Disability Ethics Committee (18/NTA/222). Results will be disseminated in an international peer-reviewed journal(s), at scientific meetings and via social media. TRIAL REGISTRATION NUMBER: NCT03292237.


Subject(s)
COVID-19 , Nutrition Therapy , Adult , Clinical Trials, Phase II as Topic , Critical Illness/therapy , Humans , Intensive Care Units , Multicenter Studies as Topic , Northern Territory , Randomized Controlled Trials as Topic
6.
Clin Nutr ESPEN ; 44: 69-77, 2021 08.
Article in English | MEDLINE | ID: covidwho-1242903

ABSTRACT

INTRODUCTION: The Coronavirus Disease 2019 (COVID-19) pandemic has overwhelmed hospital systems globally, resulting in less experienced staff caring for critically ill patients within the intensive care unit (ICU). Many guidelines have been developed to guide nutrition care. AIM: To identify key guidelines or practice recommendations for nutrition support practices in critically ill adults admitted with COVID-19, to describe similarities and differences between recommendations, and to discuss implications for clinical practice. METHODS: A literature review was conducted to identify guidelines affiliated with or endorsed by international nutrition societies or dietetic associations which included recommendations for the nutritional management of critically ill adult patients with COVID-19. Data were extracted on pre-defined key aspects of nutritional care including nutrition prescription, delivery, monitoring and workforce recommendations, and key similarities and discrepancies, as well as implications for clinical practice were summarized. RESULTS: Ten clinical practice guidelines were identified. Similar recommendations included: the use of high protein, volume restricted enteral formula delivered gastrically and commenced early in ICU and introduced gradually, while taking into consideration non-nutritional calories to avoid overfeeding. Specific advice for patients in the prone position was common, and non-intubated patients were highlighted as a population at high nutritional risk. Major discrepancies included the use of indirect calorimetry to guide energy targets and advice around using gastric residual volumes (GRVs) to monitor feeding tolerance. CONCLUSION: Overall, common recommendations around formula type and route of feeding exist, with major discrepancies being around the use of indirect calorimetry and GRVs, which reflect international ICU nutrition guidelines.


Subject(s)
COVID-19/complications , Critical Care/methods , Malnutrition/complications , Malnutrition/prevention & control , Nutrition Policy , Nutritional Requirements , Consensus , Critical Illness , Humans , Nutritional Status , SARS-CoV-2
7.
Nutr Diet ; 77(4): 426-436, 2020 09.
Article in English | MEDLINE | ID: covidwho-1221530

ABSTRACT

Coronavirus disease 2019 (COVID-19) results from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The clinical features and subsequent medical treatment, combined with the impact of a global pandemic, require specific nutritional therapy in hospitalised adults. This document aims to provide Australian and New Zealand clinicians with guidance on managing critically and acutely unwell adult patients hospitalised with COVID-19. These recommendations were developed using expert consensus, incorporating the documented clinical signs and metabolic processes associated with COVID-19, the literature from other respiratory illnesses, in particular acute respiratory distress syndrome, and published guidelines for medical management of COVID-19 and general nutrition and intensive care. Patients hospitalised with COVID-19 are likely to have preexisting comorbidities, and the ensuing inflammatory response may result in increased metabolic demands, protein catabolism, and poor glycaemic control. Common medical interventions, including deep sedation, early mechanical ventilation, fluid restriction, and management in the prone position, may exacerbate gastrointestinal dysfunction and affect nutritional intake. Nutrition care should be tailored to pandemic capacity, with early gastric feeding commenced using an algorithm to provide nutrition for the first 5-7 days in lower-nutritional-risk patients and individualised care for high-nutritional-risk patients where capacity allows. Indirect calorimetry should be avoided owing to potential aerosol exposure and therefore infection risk to healthcare providers. Use of a volume-controlled, higher-protein enteral formula and gastric residual volume monitoring should be initiated. Careful monitoring, particularly after intensive care unit stay, is required to ensure appropriate nutrition delivery to prevent muscle deconditioning and aid recovery. The infectious nature of SARS-CoV-2 and the expected high volume of patient admissions will require contingency planning to optimise staffing resources including upskilling, ensure adequate nutrition supplies, facilitate remote consultations, and optimise food service management. These guidelines provide recommendations on how to manage the aforementioned aspects when providing nutrition support to patients during the SARS-CoV-2 pandemic.

8.
Aust Crit Care ; 34(2): 191-193, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-712396

ABSTRACT

Significant investment in planning and training has occurred across the Australian healthcare sector in response to the COVID-19 pandemic, with a primary focus on the medical and nursing workforce. We provide a short summary of a recently published article titled "Surge capacity of Australian intensive care units associated with COVID-19 admissions" in the Medical Journal of Australia and, importantly, highlight a knowledge gap regarding critical care specialised allied health professional (AHP) workforce planning in Australia. The unique skill set provided by critical care specialised AHPs contributes to patient recovery long after the patient leaves the intensive care unit, with management targeted at reducing disability and improving function, activities of daily living, and quality of life. Allied health workforce planning and preparation during COVID-19 must be considered when planning comprehensive and evidence-based patient care. The work by Litton et al. has highlighted the significant lack of available data in relation to staffing of critical care specialised AHPs in Australia, and this needs to be urgently addressed.


Subject(s)
Allied Health Personnel/supply & distribution , COVID-19/therapy , Critical Care , Surge Capacity , Australia/epidemiology , COVID-19/epidemiology , Clinical Competence , Humans , Models, Organizational , Pandemics , Quality of Life , SARS-CoV-2
9.
Aust Crit Care ; 33(5): 399-406, 2020 09.
Article in English | MEDLINE | ID: covidwho-658618

ABSTRACT

Coronavirus disease 2019 (COVID-19) results from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The clinical features and subsequent medical treatment, combined with the impact of a global pandemic, require specific nutritional therapy in hospitalised adults. This document aims to provide Australian and New Zealand clinicians with guidance on managing critically and acutely unwell adult patients hospitalised with COVID-19. These recommendations were developed using expert consensus, incorporating the documented clinical signs and metabolic processes associated with COVID-19, the literature from other respiratory illnesses, in particular acute respiratory distress syndrome, and published guidelines for medical management of COVID-19 and general nutrition and intensive care. Patients hospitalised with COVID-19 are likely to have preexisting comorbidities, and the ensuing inflammatory response may result in increased metabolic demands, protein catabolism, and poor glycaemic control. Common medical interventions, including deep sedation, early mechanical ventilation, fluid restriction, and management in the prone position, may exacerbate gastrointestinal dysfunction and affect nutritional intake. Nutrition care should be tailored to pandemic capacity, with early gastric feeding commenced using an algorithm to provide nutrition for the first 5-7 days in lower-nutritional-risk patients and individualised care for high-nutritional-risk patients where capacity allows. Indirect calorimetry should be avoided owing to potential aerosole exposure and therefore infection risk to healthcare providers. Use of a volume-controlled, higher-protein enteral formula and gastric residual volume monitoring should be initiated. Careful monitoring, particularly after intensive care unit stay, is required to ensure appropriate nutrition delivery to prevent muscle deconditioning and aid recovery. The infectious nature of SARS-CoV-2 and the expected high volume of patient admissions will require contingency planning to optimise staffing resources including upskilling, ensure adequate nutrition supplies, facilitate remote consultations, and optimise food service management. These guidelines provide recommendations on how to manage the aforementioned aspects when providing nutrition support to patients during the SARS-CoV-2 pandemic.


Subject(s)
Coronavirus Infections/diet therapy , Critical Illness , Nutritional Support , Pneumonia, Viral/diet therapy , Practice Guidelines as Topic , Australia , Betacoronavirus , COVID-19 , Hospitalization , Humans , New Zealand , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL